The Dancing Men
In 1903, in southern London, a serial killer was on the loose,
with already five murder cases confirmed and attributed to the perpetrator.
Police wasn’t getting any closer to stopping him, or her. The serial killer was
codenamed “The Dancing Killer” for the simple fact that he (or she) used to
leave funny encoded notes depicting a set of “dancing men” by their victims’
bodies. No one was able to decipher those messages. After the killer’s last
attack, the following message was recovered:
We can start by assuming the symbols in the note map to English letters, which would be the simplest mapping possible. We can also assume that the “flags” in the dancing men’s hands are non-interesting artifacts (a huge assumption, but just bare with me for now), so we’ll ignore them.
The approach will be a brute-force DFS (Depth-First Search) with massive branches pruning based on a dictionary tri. We’ll first map the encoded message to a computer-understandable format, such as the following:
Lov à prefix
Love à word
elsie prepare to meet thy god
elsie prepare to meet thy job
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Collections;
class Util
{
public static Hashtable htWordsTri = null;
public static int maxWordLength = 0;
if (String.IsNullOrEmpty(dictionaryFile) ||
!File.Exists(dictionaryFile))
{
Console.WriteLine("Unable to read dictionary file: '{0}'. Please check that the file exists.", dictionaryFile);
return;
}
htWordsTri = new Hashtable();
Random rd = new Random();
int numberOfWords = 0;
string word = srDictionary.ReadLine().ToLower().Trim();
maxWordLength = word.Length;
}
{
string triEntry = word.Substring(0, i);
if (i == word.Length)
{
htWordsTri[triEntry] = true;
}
}
else
{
htWordsTri.Add(triEntry, i == word.Length);
}
}
numberOfWords++;
Console.WriteLine("Processed: {0} words, {1} tri entries", numberOfWords, htWordsTri.Count);
}
}
Console.WriteLine("Total: {0} words, {1} tri entries", numberOfWords, htWordsTri.Count);
srDictionary.Close();
}
}
}
}
A brilliant detective was actually able to crack down this
last message, leading to the apprehension of the assassin. In 1903 there was no
computers around. Thankfully, that’s no longer the case. We can solve this
puzzle with computers now, and that’s what this post is about.
We can start by assuming the symbols in the note map to English letters, which would be the simplest mapping possible. We can also assume that the “flags” in the dancing men’s hands are non-interesting artifacts (a huge assumption, but just bare with me for now), so we’ll ignore them.
The approach will be a brute-force DFS (Depth-First Search) with massive branches pruning based on a dictionary tri. We’ll first map the encoded message to a computer-understandable format, such as the following:
“#1#2#3#4#1#5#6#1#5#7#6#1#8#9#10#1#1#8#8#11#12#13#9#14”
The format #number maps to each distinct dancing man in the
note. To build a tri, we’ll use one of the available English dictionaries on
the web. We’ll build the tri by going to each word and adding to a hash-table all
the substrings of that word. Some substrings will be valid words. Others won’t,
but at least we’ll know that it is a prefix that can lead to a valid word. For
example, suppose that the word in the dictionary is “Love”. We’ll add the
following to the hash-table:
L Ã prefix
Lo à prefixLov à prefix
Love à word
That way, to prune down the search space, we always check to see
if the current partial word is either a valid prefix or a valid word. If none
of these conditions are met, there is no need to continue the search thru that path
of the tree.
With the tri built, the DFS is a standard one where we keep
track of all the mappings and make use of some minor optimizations along the
way. When you run the code, which is down below, there will be a number of
different and valid mappings for the encoded message, such as: “ear be check he
to feet tv is on”. Non-sense, and most of the decoded strings will be like
that. Hence, there is a need for a post-process of all the decoded strings
generated to really find the real one. It turns out that looking for names of
people in the messages filters them down to just a few, and some of them stand
out, such as:
elsie prepare to meet
thy box
elsie prepare to meet
thy dogelsie prepare to meet thy god
elsie prepare to meet thy job
In particular the third one. Indeed, the message was a
reference to the next victim, Elsie. Police was able to setup a trap and caught
the killer. The detective who decrypted the message was Sherlock Holmes. Took
him less than 5min. He used frequency analysis and the fact that the flags are actually word breakers... And here is the code:
Program.cs
using
System;
using
System.Collections.Generic;
using
System.Linq;
using
System.Text;
using
System.IO;
using
System.Collections;
namespace TheDancingMen
{
class Program
{
static void Main(string[]
args)
{
//Reading
data and preparing the tri
if
(args.Length != 2)
{
Console.WriteLine("Usage: TheDancingMen.exe <dictionary text
file> <encoded message text file>");
return;
}
string
dictionaryFile = args[0];
Util.BuildTriFromDictionary(dictionaryFile);
string
encodedMessageFile = args[1];
FileInfo
fiEncodedMessageFile = new FileInfo(encodedMessageFile);
StreamReader
srEncodedMessageFile = fiEncodedMessageFile.OpenText();
string
encodedMessage = srEncodedMessageFile.ReadToEnd();
if
(srEncodedMessageFile != null)
{
srEncodedMessageFile.Close();
}
//Main
logic
string[]
encodedMessageParts = encodedMessage.Split(new char[] { '#' }, StringSplitOptions.RemoveEmptyEntries);
Hashtable
htLettersUsedForMapping = new Hashtable();
Hashtable
htEncodedCharToLetter = new Hashtable();
Hashtable
htPhrasesUsed = new Hashtable();
Process(encodedMessageParts,
0,
"",
"",
htLettersUsedForMapping,
htEncodedCharToLetter,
htPhrasesUsed,
0);
}
static void Process(string[]
encodedMessageParts,
int currentIndex,
string currentDecodedWord,
string
currentDecodedPhrase,
Hashtable htLettersUsedForMapping,
Hashtable htEncodedCharToLetter,
Hashtable htPhrasesUsed,
int actualNumberOfCharsInDecodedMessage)
{
if
(currentIndex >= encodedMessageParts.Length)
{
if
(actualNumberOfCharsInDecodedMessage == encodedMessageParts.Length &&
!htPhrasesUsed.ContainsKey(currentDecodedPhrase))
{
htPhrasesUsed.Add(currentDecodedPhrase, true);
Console.WriteLine("Message: {0}", currentDecodedPhrase);
}
return;
}
if
(htEncodedCharToLetter.ContainsKey(encodedMessageParts[currentIndex]))
{
string
newDecodedWord = currentDecodedWord + ((char)htEncodedCharToLetter[encodedMessageParts[currentIndex]]).ToString();
if
(Util.htWordsTri.ContainsKey(newDecodedWord))
{
if
((bool)Util.htWordsTri[newDecodedWord]
&&
newDecodedWord.Length
> 1) //Valid word found
{
Process(encodedMessageParts,
currentIndex +
1,
"",
currentDecodedPhrase + " "
+ newDecodedWord,
htLettersUsedForMapping,
htEncodedCharToLetter,
htPhrasesUsed,
actualNumberOfCharsInDecodedMessage + newDecodedWord.Length);
}
//And
in both cases (valid word or not), since the partial word is in the tri,
proceed
Process(encodedMessageParts,
currentIndex + 1,
newDecodedWord,
currentDecodedPhrase,
htLettersUsedForMapping,
htEncodedCharToLetter,
htPhrasesUsed,
actualNumberOfCharsInDecodedMessage);
}
}
else
{
for(char letter = 'a';letter
<= 'z';letter++)
{
if
(!htLettersUsedForMapping.ContainsKey(letter))
{
htLettersUsedForMapping.Add(letter,
true);
htEncodedCharToLetter.Add(encodedMessageParts[currentIndex], letter);
string newDecodedWord = currentDecodedWord + letter.ToString();
if (Util.htWordsTri.ContainsKey(newDecodedWord))
{
if ((bool)Util.htWordsTri[newDecodedWord] &&
newDecodedWord.Length > 1) //Valid word
found
{
Process(encodedMessageParts,
currentIndex + 1,
"",
currentDecodedPhrase + " "
+ newDecodedWord,
htLettersUsedForMapping,
htEncodedCharToLetter,
htPhrasesUsed,
actualNumberOfCharsInDecodedMessage + newDecodedWord.Length);
}
//And in both cases (valid word or not), since the partial
word is in the tri, proceed
Process(encodedMessageParts,
currentIndex + 1,
newDecodedWord,
currentDecodedPhrase,
htLettersUsedForMapping,
htEncodedCharToLetter,
htPhrasesUsed,
actualNumberOfCharsInDecodedMessage);
}
htEncodedCharToLetter.Remove(encodedMessageParts[currentIndex]);
htLettersUsedForMapping.Remove(letter);
}
}
}
}
}
}
Util.cs
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Collections;
namespace
TheDancingMen
{class Util
{
public static Hashtable htWordsTri = null;
public static int maxWordLength = 0;
public static void
BuildTriFromDictionary(string dictionaryFile)
{if (String.IsNullOrEmpty(dictionaryFile) ||
!File.Exists(dictionaryFile))
{
Console.WriteLine("Unable to read dictionary file: '{0}'. Please check that the file exists.", dictionaryFile);
return;
}
FileInfo
fiDictionary = new FileInfo(dictionaryFile);
StreamReader
srDictionary = fiDictionary.OpenText();htWordsTri = new Hashtable();
Random rd = new Random();
int numberOfWords = 0;
while
(!srDictionary.EndOfStream)
{string word = srDictionary.ReadLine().ToLower().Trim();
if(word.Length
> maxWordLength)
{maxWordLength = word.Length;
}
//Add
it to the tri
for
(int i = 1; i <= word.Length; i++){
string triEntry = word.Substring(0, i);
if
(htWordsTri.ContainsKey(triEntry))
{if (i == word.Length)
{
htWordsTri[triEntry] = true;
}
}
else
{
htWordsTri.Add(triEntry, i == word.Length);
}
}
numberOfWords++;
if
(rd.Next(0, 10000) < 1) //Probability: 1/10000 *
100%
{Console.WriteLine("Processed: {0} words, {1} tri entries", numberOfWords, htWordsTri.Count);
}
}
Console.WriteLine("Total: {0} words, {1} tri entries", numberOfWords, htWordsTri.Count);
if
(srDictionary != null)
{srDictionary.Close();
}
}
}
}
Comments
Post a Comment