LeetCode Hard Problem

Problem is here: https://leetcode.com/problems/closest-binary-search-tree-value-ii/
272. Closest Binary Search Tree Value II
Hard
Given a non-empty binary search tree and a target value, find k values in the BST that are closest to the target.
Note:
  • Given target value is a floating point.
  • You may assume k is always valid, that is: k ≤ total nodes.
  • You are guaranteed to have only one unique set of k values in the BST that are closest to the target.
Example:
Input: root = [4,2,5,1,3], target = 3.714286, and k = 2

    4
   / \
  2   5
 / \
1   3

Output: [4,3]
Follow up:
Assume that the BST is balanced, could you solve it in less than O(n) runtime (where n = total nodes)?
Accepted
50,428
Submissions
103,444

I managed to solve this problem in NLogN. Initially I thought this would not work since the problem is suggesting a less-than O(n) solution, but I gave it a try anyways.
To solve in NLogN one approach is the following:

  1. Have a priority queue (I changed my implementation to take a double as priority instead of long - trivial change)
  2. Unfortunately, ignore the BST properties
  3. Perform a full pre-order DFS traversal of the tree. Add each element to the priority queue with priority |node.val - target|
  4. After that, retrieve the top K elements from the priority queue (it can be done in K*LogN time)

The most expensive step is #3, which costs NLogN. Notice that we also use O(N)-space, which isn't ideal.
When I put it to the test, the result was better than I expected. Code is below, cheers, ACC.

public class Solution
{
    public IList<int> ClosestKValues(TreeNode root, double target, int k)
    {
        PriorityQueue pQueue = new PriorityQueue();
        PopulatePQueue(root, target, pQueue);

        List<int> retVal = new List<int>();
        for (int i = 0; i < k; i++)
        {
            retVal.Add((int)pQueue.Dequeue());
        }

        return retVal;
    }

    private void PopulatePQueue(TreeNode node, double target, PriorityQueue pQueue)
    {
        if (node == null) return;
        pQueue.Enqueue(node.val, Math.Abs(node.val - target));
        PopulatePQueue(node.left, target, pQueue);
        PopulatePQueue(node.right, target, pQueue);
    }
}

public class PriorityQueue
{
    public struct HeapEntry
    {
        private object item;
        private double priority;
        public HeapEntry(object item, double priority)
        {
            this.item = item;
            this.priority = priority;
        }
        public object Item
        {
            get
            {
                return item;
            }
        }
        public double Priority
        {
            get
            {
                return priority;
            }
        }
    }

    private int count;
    private int capacity;
    private HeapEntry[] heap;

    public int Count
    {
        get
        {
            return this.count;
        }
    }

    public PriorityQueue()
    {
        capacity = 100000;
        heap = new HeapEntry[capacity];
    }

    public object Dequeue(/*ref long weight*/)
    {
        object result = heap[0].Item;
        //weight = heap[0].Priority;
        count--;
        trickleDown(0, heap[count]);
        return result;
    }

    public void Enqueue(object item, double priority)
    {
        count++;
        bubbleUp(count - 1, new HeapEntry(item, priority));
    }

    private void bubbleUp(int index, HeapEntry he)
    {
        int parent = (index - 1) / 2;
        // note: (index > 0) means there is a parent
        while ((index > 0) && (heap[parent].Priority > he.Priority))
        {
            heap[index] = heap[parent];
            index = parent;
            parent = (index - 1) / 2;
        }
        heap[index] = he;
    }

    private void trickleDown(int index, HeapEntry he)
    {
        int child = (index * 2) + 1;
        while (child < count)
        {
            if (((child + 1) < count) &&
                (heap[child].Priority > heap[child + 1].Priority))
            {
                child++;
            }
            heap[index] = heap[child];
            index = child;
            child = (index * 2) + 1;
        }
        bubbleUp(index, he);
    }
}

Comments

Popular posts from this blog

Advent of Code - Day 6, 2024: BFS and FSM

Advent of Code - Day 7, 2024: Backtracking and Eval

Golang vs. C#: performance characteristics (simple case study)