Brute-force based on hints II

Yeah for this problem I wanted to know if it was possible to go with a brute-force approach. So I looked at the hints, and sure enough, it says that brute-force is OK, so that's what I did. Brute-forcing it with backtracking. Code is below, cheers, ACC.

Maximum Compatibility Score Sum - LeetCode

1947. Maximum Compatibility Score Sum
Medium

There is a survey that consists of n questions where each question's answer is either 0 (no) or 1 (yes).

The survey was given to m students numbered from 0 to m - 1 and m mentors numbered from 0 to m - 1. The answers of the students are represented by a 2D integer array students where students[i] is an integer array that contains the answers of the ith student (0-indexed). The answers of the mentors are represented by a 2D integer array mentors where mentors[j] is an integer array that contains the answers of the jth mentor (0-indexed).

Each student will be assigned to one mentor, and each mentor will have one student assigned to them. The compatibility score of a student-mentor pair is the number of answers that are the same for both the student and the mentor.

  • For example, if the student's answers were [1, 01] and the mentor's answers were [0, 01], then their compatibility score is 2 because only the second and the third answers are the same.

You are tasked with finding the optimal student-mentor pairings to maximize the sum of the compatibility scores.

Given students and mentors, return the maximum compatibility score sum that can be achieved.

 

Example 1:

Input: students = [[1,1,0],[1,0,1],[0,0,1]], mentors = [[1,0,0],[0,0,1],[1,1,0]]
Output: 8
Explanation: We assign students to mentors in the following way:
- student 0 to mentor 2 with a compatibility score of 3.
- student 1 to mentor 0 with a compatibility score of 2.
- student 2 to mentor 1 with a compatibility score of 3.
The compatibility score sum is 3 + 2 + 3 = 8.

Example 2:

Input: students = [[0,0],[0,0],[0,0]], mentors = [[1,1],[1,1],[1,1]]
Output: 0
Explanation: The compatibility score of any student-mentor pair is 0.

 

Constraints:

  • m == students.length == mentors.length
  • n == students[i].length == mentors[j].length
  • 1 <= m, n <= 8
  • students[i][k] is either 0 or 1.
  • mentors[j][k] is either 0 or 1.

public int MaxCompatibilitySum(int[][] students, int[][] mentors)
{
    int bestSum = 0;
    MaxCompatibilitySum(students, mentors, 0, new Hashtable(), 0, ref bestSum);
    return bestSum;
}

private void MaxCompatibilitySum(int[][] students,
                                    int[][] mentors,
                                    int studendIndex,
                                    Hashtable mentorIndexUsed,
                                    int currentSum,
                                    ref int bestSum)
{
    if (studendIndex >= students.Length)
    {
        bestSum = Math.Max(bestSum, currentSum);
        return;
    }

    for (int mentorIndex = 0; mentorIndex < mentors.Length; mentorIndex++)
    {
        if (!mentorIndexUsed.ContainsKey(mentorIndex))
        {
            int localSum = 0;
            for (int col = 0; col < students[studendIndex].Length; col++)
            {
                localSum += (students[studendIndex][col] == mentors[mentorIndex][col]) ? 1 : 0;
            }

            //Console.WriteLine("({0}, {1}) ==> {2}", studendIndex, mentorIndex, localSum);

            mentorIndexUsed.Add(mentorIndex, true);
            MaxCompatibilitySum(students, mentors, studendIndex + 1, mentorIndexUsed, currentSum + localSum, ref bestSum);
            mentorIndexUsed.Remove(mentorIndex);
        }
    }
}

Comments

Popular posts from this blog

Advent of Code - Day 6, 2024: BFS and FSM

Advent of Code - Day 7, 2024: Backtracking and Eval

Golang vs. C#: performance characteristics (simple case study)