Prefix Sum V: Prefix && Suffix

Interesting problem, the hints guide you to avoid using the division (you'll run into TLE), solution here is to create a prefix product, a suffix product, and then determine the resulting matrix. Make use of the following modular identity:

(A*B)%M = ((A%M) * (B%M))%M

Code is down below, cheers, ACC.

Construct Product Matrix - LeetCode

2906. Construct Product Matrix
Medium

Given a 0-indexed 2D integer matrix grid of size n * m, we define a 0-indexed 2D matrix p of size n * m as the product matrix of grid if the following condition is met:

  • Each element p[i][j] is calculated as the product of all elements in grid except for the element grid[i][j]. This product is then taken modulo 12345.

Return the product matrix of grid.

 

Example 1:

Input: grid = [[1,2],[3,4]]
Output: [[24,12],[8,6]]
Explanation: p[0][0] = grid[0][1] * grid[1][0] * grid[1][1] = 2 * 3 * 4 = 24
p[0][1] = grid[0][0] * grid[1][0] * grid[1][1] = 1 * 3 * 4 = 12
p[1][0] = grid[0][0] * grid[0][1] * grid[1][1] = 1 * 2 * 4 = 8
p[1][1] = grid[0][0] * grid[0][1] * grid[1][0] = 1 * 2 * 3 = 6
So the answer is [[24,12],[8,6]].

Example 2:

Input: grid = [[12345],[2],[1]]
Output: [[2],[0],[0]]
Explanation: p[0][0] = grid[0][1] * grid[0][2] = 2 * 1 = 2.
p[0][1] = grid[0][0] * grid[0][2] = 12345 * 1 = 12345. 12345 % 12345 = 0. So p[0][1] = 0.
p[0][2] = grid[0][0] * grid[0][1] = 12345 * 2 = 24690. 24690 % 12345 = 0. So p[0][2] = 0.
So the answer is [[2],[0],[0]].

 

Constraints:

  • 1 <= n == grid.length <= 105
  • 1 <= m == grid[i].length <= 105
  • 2 <= n * m <= 105
  • 1 <= grid[i][j] <= 109
Accepted
7,537
Submissions
26,026

public int[][] ConstructProductMatrix(int[][] grid)
{
    int MOD = 12345;

    long[][] prefixProduct = new long[grid.Length][];
    for (int r = 0; r < grid.Length; r++) prefixProduct[r] = new long[grid[r].Length];

    for (int r = 0; r < grid.Length; r++)
    {
        for (int c = 0; c < grid[r].Length; c++)
        {
            int previousR = 0;
            int previousC = 0;

            previousC = c - 1;
            if (previousC < 0)
            {
                previousR = r - 1;
                previousC = grid[0].Length - 1;
            }
            else
            {
                previousR = r;
            }

            if (previousC >= 0 && previousR >= 0)
            {
                prefixProduct[r][c] = (prefixProduct[previousR][previousC] * grid[previousR][previousC]) % MOD;
            }
            else
            {
                prefixProduct[r][c] = 1;
            }
        }
    }

    long[][] suffixProduct = new long[grid.Length][];
    for (int r = 0; r < grid.Length; r++) suffixProduct[r] = new long[grid[r].Length];

    for (int r = grid.Length - 1; r >= 0; r--)
    {
        for (int c = grid[r].Length - 1; c >= 0; c--)
        {
            int nextR = 0;
            int nextC = 0;

            nextC = c + 1;
            if (nextC >= grid[0].Length)
            {
                nextR = r + 1;
                nextC = 0;
            }
            else
            {
                nextR = r;
            }

            if (nextC < grid[0].Length && nextR < grid.Length)
            {
                suffixProduct[r][c] = (suffixProduct[nextR][nextC] * grid[nextR][nextC]) % MOD;
            }
            else
            {
                suffixProduct[r][c] = 1;
            }
        }
    }

    int[][] retVal = new int[grid.Length][];
    for (int r = 0;  r < grid.Length; r++) retVal[r] = new int[grid[r].Length];

    for (int r = 0; r < grid.Length; r++)
    {
        for (int c = 0; c < grid[r].Length; c++)
        {
            retVal[r][c] = ((int)prefixProduct[r][c] * (int)suffixProduct[r][c]) % MOD;
        }
    }

    return retVal;
}

Comments

Popular posts from this blog

Advent of Code - Day 6, 2024: BFS and FSM

Advent of Code - Day 7, 2024: Backtracking and Eval

Golang vs. C#: performance characteristics (simple case study)