LeetCode Hard Problem: Basic Calculator III

Problem is here: https://leetcode.com/problems/basic-calculator-iii/description/

Implement a basic calculator to evaluate a simple expression string.
The expression string may contain open ( and closing parentheses ), the plus + or minus sign -non-negative integers and empty spaces .
The expression string contains only non-negative integers, +-*/ operators , open ( and closing parentheses ) and empty spaces . The integer division should truncate toward zero.
You may assume that the given expression is always valid.
Some examples:
"1 + 1" = 2
" 6-4 / 2 " = 4
"2*(5+5*2)/3+(6/2+8)" = 21
"(2+6* 3+5- (3*14/7+2)*5)+3"=-12

Now given the number of submissions and acceptances, this is definitely not a super trivial problem:


Now since I had some ExpressionEvaluation code hanging around, I reused the code with some few modifications:

  • Keep it to basic operations only
  • Remove spaces from the expression
  • Change the data type during the evaluation to BigInteger. That way you avoid over/underflow partial calculations. In the very end, cast the result back to Integer
And that's it! Code is down below, cheers, Marcelo


    public class Solution
    {
        public int Calculate(string s)
        {
            BigInteger retVal = 0;
            ExpressionEvaluation(RemoveSpaces(s), out retVal);
            return (int)retVal;
        }

        private string RemoveSpaces(string s)
        {
            if (String.IsNullOrEmpty(s)) return s;
            string retVal = "";
            for (int i = 0; i < s.Length; i++)
                if (s[i] != ' ') retVal += s[i].ToString();
            return retVal;
        }

        private bool ExpressionEvaluation(string expression,
                                          out BigInteger result)
        {
            result = 0;

            if (expression == null)
            {
                return false;
            }

            if (expression.Trim().Length == 0)
            {
                return true;
            }

            if (BigInteger.TryParse(expression, out result))
            {
                return true;
            }

            if (expression.Length > 2 &&
                expression.StartsWith("(") &&
                expression.EndsWith(")") &&
                IsWellFormedBrackets(expression.Substring(1, expression.Length - 2)))
            {
                return ExpressionEvaluation(expression.Substring(1, expression.Length - 2), out result);
            }

            char[] operators = new char[] { '+', '-', '*', '/' };
            foreach (char op in operators)
            {
                int bracketsCount = 0;
                for (int i = expression.Length - 1; i >= 0; i--)
                {
                    if (expression[i] == '(')
                    {
                        bracketsCount++;
                    }
                    else if (expression[i] == ')')
                    {
                        bracketsCount--;
                    }

                    if (expression[i] == op &&
                        bracketsCount == 0)
                    {
                        BigInteger value1 = 0;
                        BigInteger value2 = 0;
                        string part1 = "";
                        string part2 = "";

                        if (i > 0)
                        {
                            part1 = expression.Substring(0, i);
                        }
                        if (i + 1 < expression.Length)
                        {
                            part2 = expression.Substring(i + 1);
                        }
                        if (!ExpressionEvaluation(part1, out value1))
                        {
                            return false;
                        }
                        if (!ExpressionEvaluation(part2, out value2))
                        {
                            return false;
                        }

                        switch (op)
                        {
                            case '+':
                                result = value1 + value2;
                                break;
                            case '-':
                                result = value1 - value2;
                                break;
                            case '*':
                                result = value1 * value2;
                                break;
                            case '/':
                                if (value2 == 0)
                                {
                                    return false;
                                }
                                result = value1 / value2;
                                break;
                        }

                        return true;
                    }
                }
            }

            return false;
        }

        private static bool IsWellFormedBrackets(string expression)
        {
            if (expression == null ||
                expression.Trim().Length == 0)
            {
                return true;
            }

            int bracketsCount = 0;
            for (int i = 0; i < expression.Length; i++)
            {
                if (expression[i] == '(')
                {
                    bracketsCount++;
                }
                else if (expression[i] == ')')
                {
                    bracketsCount--;
                }
                if (bracketsCount < 0)
                {
                    return false;
                }
            }

            return bracketsCount == 0;
        }
    }

Comments

  1. very nice, Marcelo! I decided to use a different way of solving this problem by reducing it to a much simpler problem of evaluating an expression defined in postfix form. In order to do this, we just need to convert an infix form to a postfix form and fortunately Dijkstra, as always, invented an awesome algorithm to do just that and it's called shunting yard algorithm. What I like about this solution is that the problem is nicely split into 2 much simpler ones and it also works very well for evaluating expressions with variables, since we don't have to re-parse the entire expression every time in order to evaluate it. As always, my convoluted solution below:

    class Solution {
    private:
    int operator_precedence(char op) {
    if (op == '(') return 1;
    if (op == '+' || op == '-') return 2;
    return 3; // * or /
    }

    vector parse(const string& text) {
    stack operators;
    vector tokens;
    int i = 0;
    while (i < text.size()) {
    if (text[i] == ' ') {
    i += 1;
    } else if (text[i] == '(') {
    operators.push(text[i++]);
    } else if (text[i] == ')') {
    while (operators.top() != '(') {
    tokens.emplace_back(1, operators.top());
    operators.pop();
    }
    operators.pop();
    i += 1;
    } else if (isdigit(text[i])) {
    int start = i++;
    while (i < text.size() && isdigit(text[i])) { i += 1; }
    tokens.emplace_back(text.substr(start, i - start));
    } else {
    while (!operators.empty() && operator_precedence(operators.top()) >= operator_precedence(text[i])) {
    tokens.emplace_back(1, operators.top());
    operators.pop();
    }
    operators.push(text[i++]);
    }
    }
    while (!operators.empty()) {
    tokens.emplace_back(1, operators.top());
    operators.pop();
    }
    return tokens;
    }

    function to_function(char op) {
    switch (op) {
    case '+': return plus();
    case '-': return minus();
    case '/': return divides();
    case '*': return multiplies();
    }
    }

    long evaluate(const vector& tokens) {
    stack operands;
    for (const string& token: tokens) {
    if (isdigit(token.front())) {
    operands.push(stol(token));
    } else {
    auto func = to_function(token.front());
    long operand_2 = operands.top(); operands.pop();
    long operand_1 = operands.top(); operands.pop();
    operands.push(func(operand_1, operand_2));
    }
    }
    return operands.top();
    }
    public:
    int calculate(const string& text) {
    if (text.empty()) return 0;
    const auto& tokens = parse(text);
    return evaluate(tokens);
    }
    };

    Cheers,
    Taras

    ReplyDelete
    Replies
    1. what (const string& text) even mean?

      Can't you just convert it to leetcode format? Thanks!
      public int Calculate(string s)
      {
      BigInteger retVal = 0;
      ExpressionEvaluation(RemoveSpaces(s), out retVal);
      return (int)retVal;
      }

      Delete
    2. (const string& text) means that it's a C++ and it's in leetcode format ;)

      Delete

Post a Comment

Popular posts from this blog

Advent of Code - Day 6, 2024: BFS and FSM

Advent of Code - Day 7, 2024: Backtracking and Eval

Golang vs. C#: performance characteristics (simple case study)