ACC's Math Conjecture
Assume P, N and X are positive integers greater than 1.The only possible value for X in the below expression is 2.
I can't prove the conjecture but I can write some code that validates it for large P's and N's, and no matter how far it goes, the only possible integer value for X is 2. Take a look at some of the results (P;N;X). Code is down below, cheers, ACC.
2;2;2
4;4;2
16;8;2
32;10;2
256;16;2
1024;20;2
2048;22;2
8192;26;2
32768;30;2
65536;32;2
I can't prove the conjecture but I can write some code that validates it for large P's and N's, and no matter how far it goes, the only possible integer value for X is 2. Take a look at some of the results (P;N;X). Code is down below, cheers, ACC.
2;2;2
4;4;2
16;8;2
32;10;2
256;16;2
1024;20;2
2048;22;2
8192;26;2
32768;30;2
65536;32;2
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace SQRootPower { class Program { static void Main(string[] args) { int MAXN = 2000000; int MAXP = 1000; for (int n = 2; n <= MAXN; n++) { for (int p = 2; p <= MAXP; p++) { double result = _SQRootPower(n, p); if (Math.Abs((int)result - result) <= 0.00000001) { Console.WriteLine("{0};{1};{2}", n, p, result); } } } } static double _SQRootPower(int n, int p) { int MAXLIMIT = 100; double result = Math.Pow(n, 1.0 / p); for (int i = 0; i < MAXLIMIT; i++) { result = Math.Pow(Math.Pow(n, 1.0 / p), result); } return result; } } }
Comments
Post a Comment