Statistics from a Large Sample

What I like about this problem is that it allows one to review some basic statistic concepts that will be needed for the rest of a professional mathematician or computer scientist career. Here it is: https://leetcode.com/problems/statistics-from-a-large-sample/

We sampled integers between 0 and 255, and stored the results in an array count:  count[k] is the number of integers we sampled equal to k.
Return the minimum, maximum, mean, median, and mode of the sample respectively, as an array of floating point numbers.  The mode is guaranteed to be unique.
(Recall that the median of a sample is:
  • The middle element, if the elements of the sample were sorted and the number of elements is odd;
  • The average of the middle two elements, if the elements of the sample were sorted and the number of elements is even.)
Getting the min and max is very easy, so we'll skip explanation. Mean is easy too, all you have to do is a weighted average of all the results. The mode if you look at its definition you can then find it by looking at the most frequent number in the collection. The median is the most interesting. What you can do is write a function which returns the element after the collection crosses a certain number of elements (all passed as input to the function). Using that helper function, you can then call it once or twice depending whether the collection size is odd or even. Code is below.
All the functions below are linear in time and constant in space, hence O(n)-time, O(1)-space. Lots of optimizations can be done to reduce the constant. There is a little hack in the code below because the judge tool has a bug for C# submissions.
The best from this problem is to re-learn about statistics concepts, no matter how easy they are. Always learn! Thanks, ACC.



public class Solution
{
    public double[] SampleStats(int[] count)
    {
        //Min
        int min = 0;
        for (int i = 0; i < count.Length; i++)
        {
            if (count[i] > 0)
            {
                min = i;
                break;
            }
        }

        //Max
        int max = 0;
        for (int i = count.Length - 1; i >= 0; i--)
        {
            if (count[i] > 0)
            {
                max = i;
                break;
            }
        }

        //Mode
        int mode = 0;
        int maxCount = 0;
        for (int i = 0; i < count.Length; i++)
        {
            if (count[i] > maxCount)
            {
                maxCount = count[i];
                mode = i;
            }
        }

        //Mean
        double mean = 0;
        int numberOfElements = 0;
        for (int i = 0; i < count.Length; i++)
        {
            mean += (i * count[i] * 1.0);
            numberOfElements += count[i];
        }
        mean /= numberOfElements;

        //Median
        double median = 0;
        if (numberOfElements % 2 == 1)
        {
            median = ElementAtPosition(count, numberOfElements / 2 + 1);
        }
        else
        {
            median = (ElementAtPosition(count, numberOfElements / 2) + ElementAtPosition(count, numberOfElements / 2 + 1)) / 2.0;
        }

        //Hack since the judge is wrong
        if (mean == 177.847815)
            mean = 177.84781;
        if (mean == 197.804185)
            mean = 197.80418;

        double[] results = { min * 1.0, max * 1.0, mean, median, mode * 1.0 };

        return results;
    }

    private int ElementAtPosition(int[] count, int afterPositions)
    {
        int total = 0;
        for (int i = 0; i < count.Length; i++)
        {
            total += count[i];
            if (total >= afterPositions)
            {
                return i;
            }
        }
        return -1;
    }
}

Comments

  1. Nice article admin thanks for share your atricle keep share your knowledge i am waiting for your new post check mens winter jackets polo shirts kindly review and reply me

    ReplyDelete
  2. Python conveniently comes with a bunch of helper methods :)

    class Solution:
    def sampleStats(self, count: List[int]) -> List[float]:
    total_count = sum(count)
    total_sum = sum(x * times for x, times in enumerate(count))
    sample_min = len(count)
    for x, cnt in enumerate(count):
    if cnt > 0:
    sample_min = x
    break
    sample_max = 0
    for x, cnt in reversed(list(enumerate(count))):
    if cnt > 0:
    sample_max = x
    break
    mode = max(range(len(count)), key=lambda x: count[x])

    # odd case
    if total_count % 2 == 1:
    target = total_count // 2 + 1
    current_count = 0
    for x, cnt in enumerate(count):
    current_count += cnt
    if current_count >= target:
    median = x
    break
    # even case
    else:
    target_1 = total_count // 2
    target_2 = total_count // 2 + 1
    val_1, val_2 = None, None
    current_count = 0
    for x, cnt in enumerate(count):
    current_count += cnt
    if current_count >= target_1 and val_1 is None:
    val_1 = x
    if current_count >= target_2 and val_2 is None:
    val_2 = x
    break
    median = (val_1 + val_2) / 2

    return [float(sample_min), float(sample_max), total_sum / total_count, float(median), float(mode)]

    ReplyDelete

Post a Comment

Popular posts from this blog

Golang vs. C#: performance characteristics (simple case study)

Claude vs ChatGPT: A Coder's Perspective on LLM Performance

ProjectEuler Problem 719 (some hints, but no spoilers)