Longest Turbulent Subarray - Fibonacci's Approach
Problem is here: https://leetcode.com/problems/longest-turbulent-subarray/
Use same approach used to calculate the Nth Fibonacci's number:keep track of the previous value and calculate the current. Along the way, keep track of the best (longest) so far. Your previous become current. Keep going, O(n)-time, O(1)-space. Code's below, cheers, ACC.
public class Solution
{
public int MaxTurbulenceSize(int[] A)
{
if (A == null) return 0;
if (A.Length == 1) return 1;
if (A.Length == 2)
{
if (A[0] == A[1]) return 1;
else return 2;
}
int prev = (A[0] == A[1]) ? 1 : 2;
int best = prev;
for (int i = 2; i < A.Length; i++)
{
int current = 0;
if (A[i] == A[i - 1])
{
current = 1;
}
else
{
if (A[i] > A[i - 1])
{
if (A[i - 1] >= A[i - 2])
{
current = 2;
}
else
{
current = 1 + prev;
}
}
else
{
if (A[i - 1] <= A[i - 2])
{
current = 2;
}
else
{
current = 1 + prev;
}
}
}
best = Math.Max(best, current);
prev = current;
}
return best;
}
}
978. Longest Turbulent Subarray
Medium
A subarray
A[i], A[i+1], ..., A[j]
of A
is said to be turbulent if and only if:- For
i <= k < j
,A[k] > A[k+1]
whenk
is odd, andA[k] < A[k+1]
whenk
is even; - OR, for
i <= k < j
,A[k] > A[k+1]
whenk
is even, andA[k] < A[k+1]
whenk
is odd.
That is, the subarray is turbulent if the comparison sign flips between each adjacent pair of elements in the subarray.
Return the length of a maximum size turbulent subarray of A.
Example 1:
Input: [9,4,2,10,7,8,8,1,9] Output: 5 Explanation: (A[1] > A[2] < A[3] > A[4] < A[5])
Example 2:
Input: [4,8,12,16] Output: 2
Example 3:
Input: [100] Output: 1
Note:
1 <= A.length <= 40000
0 <= A[i] <= 10^9
public class Solution
{
public int MaxTurbulenceSize(int[] A)
{
if (A == null) return 0;
if (A.Length == 1) return 1;
if (A.Length == 2)
{
if (A[0] == A[1]) return 1;
else return 2;
}
int prev = (A[0] == A[1]) ? 1 : 2;
int best = prev;
for (int i = 2; i < A.Length; i++)
{
int current = 0;
if (A[i] == A[i - 1])
{
current = 1;
}
else
{
if (A[i] > A[i - 1])
{
if (A[i - 1] >= A[i - 2])
{
current = 2;
}
else
{
current = 1 + prev;
}
}
else
{
if (A[i - 1] <= A[i - 2])
{
current = 2;
}
else
{
current = 1 + prev;
}
}
}
best = Math.Max(best, current);
prev = current;
}
return best;
}
}
Comments
Post a Comment