Seat Manager == Priority Queue
This problem just requires a direct implementation of a Priority Queue, take a look: Seat Reservation Manager - LeetCode
1845. Seat Reservation Manager
Medium
Design a system that manages the reservation state of n
seats that are numbered from 1
to n
.
Implement the SeatManager
class:
SeatManager(int n)
Initializes aSeatManager
object that will managen
seats numbered from1
ton
. All seats are initially available.int reserve()
Fetches the smallest-numbered unreserved seat, reserves it, and returns its number.void unreserve(int seatNumber)
Unreserves the seat with the givenseatNumber
.
Example 1:
Input ["SeatManager", "reserve", "reserve", "unreserve", "reserve", "reserve", "reserve", "reserve", "unreserve"] [[5], [], [], [2], [], [], [], [], [5]] Output [null, 1, 2, null, 2, 3, 4, 5, null] Explanation SeatManager seatManager = new SeatManager(5); // Initializes a SeatManager with 5 seats. seatManager.reserve(); // All seats are available, so return the lowest numbered seat, which is 1. seatManager.reserve(); // The available seats are [2,3,4,5], so return the lowest of them, which is 2. seatManager.unreserve(2); // Unreserve seat 2, so now the available seats are [2,3,4,5]. seatManager.reserve(); // The available seats are [2,3,4,5], so return the lowest of them, which is 2. seatManager.reserve(); // The available seats are [3,4,5], so return the lowest of them, which is 3. seatManager.reserve(); // The available seats are [4,5], so return the lowest of them, which is 4. seatManager.reserve(); // The only available seat is seat 5, so return 5. seatManager.unreserve(5); // Unreserve seat 5, so now the available seats are [5].
Constraints:
1 <= n <= 105
1 <= seatNumber <= n
- For each call to
reserve
, it is guaranteed that there will be at least one unreserved seat. - For each call to
unreserve
, it is guaranteed thatseatNumber
will be reserved. - At most
105
calls in total will be made toreserve
andunreserve
.
Accepted
5,450
Submissions
10,477
It is a direct implementation of Priority Queue. Code is down below, cheers, ACC.
public class SeatManager { private PriorityQueue pQueue = null; public SeatManager(int n) { pQueue = new PriorityQueue(true); for (int i = 1; i <= n; i++) { pQueue.Enqueue(i, i); } } public int Reserve() { return (int)pQueue.Dequeue(); } public void Unreserve(int seatNumber) { pQueue.Enqueue(seatNumber, seatNumber); } } public class PriorityQueue { public struct HeapEntry { private object item; private double priority; public HeapEntry(object item, double priority) { this.item = item; this.priority = priority; } public object Item { get { return item; } } public double Priority { get { return priority; } } } private bool ascend; private int count; private int capacity; private HeapEntry[] heap; public int Count { get { return this.count; } } public PriorityQueue(bool ascend) { capacity = 1000000; heap = new HeapEntry[capacity]; this.ascend = ascend; } public object Dequeue(/*out double priority*/) { //priority = heap[0].Priority; object result = heap[0].Item; count--; trickleDown(0, heap[count]); return result; } public object Peak(/*out double priority*/) { //priority = heap[0].Priority; object result = heap[0].Item; return result; } public void Enqueue(object item, double priority) { count++; bubbleUp(count - 1, new HeapEntry(item, priority)); } private void bubbleUp(int index, HeapEntry he) { int parent = (index - 1) / 2; // note: (index > 0) means there is a parent if (this.ascend) { while ((index > 0) && (heap[parent].Priority > he.Priority)) { heap[index] = heap[parent]; index = parent; parent = (index - 1) / 2; } heap[index] = he; } else { while ((index > 0) && (heap[parent].Priority < he.Priority)) { heap[index] = heap[parent]; index = parent; parent = (index - 1) / 2; } heap[index] = he; } } private void trickleDown(int index, HeapEntry he) { int child = (index * 2) + 1; while (child < count) { if (this.ascend) { if (((child + 1) < count) && (heap[child].Priority > heap[child + 1].Priority)) { child++; } } else { if (((child + 1) < count) && (heap[child].Priority < heap[child + 1].Priority)) { child++; } } heap[index] = heap[child]; index = child; child = (index * 2) + 1; } bubbleUp(index, he); } }
Comments
Post a Comment