Prefix Sum II: The Definition of Prefix Sum
I think a problem like this one is more like a standard definition of a prefix sum. It is asking, begging for a prefix sum solution. Take a look:
2219. Maximum Sum Score of Array
Medium
You are given a 0-indexed integer array nums
of length n
.
The sum score of nums
at an index i
where 0 <= i < n
is the maximum of:
- The sum of the first
i + 1
elements ofnums
. - The sum of the last
n - i
elements ofnums
.
Return the maximum sum score of nums
at any index.
Example 1:
Input: nums = [4,3,-2,5] Output: 10 Explanation: The sum score at index 0 is max(4, 4 + 3 + -2 + 5) = max(4, 10) = 10. The sum score at index 1 is max(4 + 3, 3 + -2 + 5) = max(7, 6) = 7. The sum score at index 2 is max(4 + 3 + -2, -2 + 5) = max(5, 3) = 5. The sum score at index 3 is max(4 + 3 + -2 + 5, 5) = max(10, 5) = 10. The maximum sum score of nums is 10.
Example 2:
Input: nums = [-3,-5] Output: -3 Explanation: The sum score at index 0 is max(-3, -3 + -5) = max(-3, -8) = -3. The sum score at index 1 is max(-3 + -5, -5) = max(-8, -5) = -5. The maximum sum score of nums is -3.
Constraints:
n == nums.length
1 <= n <= 105
-105 <= nums[i] <= 105
Basically create a prefix sum (long) array and store the prefix sum. After that, all is needed is a linear scan looking for the max. Code is below, cheers, ACC.
public long MaximumSumScore(int[] nums) { long[] prefixSum = new long[nums.Length]; prefixSum[0] = nums[0]; for (int i = 1; i < prefixSum.Length; i++) prefixSum[i] = nums[i] + prefixSum[i - 1]; long max = Int64.MinValue; for (int i = 0; i < prefixSum.Length; i++) max = Math.Max(max, Math.Max(prefixSum[i], prefixSum[prefixSum.Length - 1] - prefixSum[i] + nums[i])); return max; }
Comments
Post a Comment