Classic Dynamic Programming IV
Another medium problem requiring a DP solution (more and more I'm seeing Medium-LC problems needing an DP solution). It follows a similar pattern of the previous ones, except that it doesn't look for min/max, but you can see the structure being the same: suppose you know the solution on whether you can do a valid partition for positions 0, 1, 2, ..., N-1. In order to know whether there is a valid partition for N, just run the three checks using the info stored for the previous partitions. Code is down below, cheers, ACC.
Check if There is a Valid Partition For The Array - LeetCode
You are given a 0-indexed integer array nums
. You have to partition the array into one or more contiguous subarrays.
We call a partition of the array valid if each of the obtained subarrays satisfies one of the following conditions:
- The subarray consists of exactly
2
equal elements. For example, the subarray[2,2]
is good. - The subarray consists of exactly
3
equal elements. For example, the subarray[4,4,4]
is good. - The subarray consists of exactly
3
consecutive increasing elements, that is, the difference between adjacent elements is1
. For example, the subarray[3,4,5]
is good, but the subarray[1,3,5]
is not.
Return true
if the array has at least one valid partition. Otherwise, return false
.
Example 1:
Input: nums = [4,4,4,5,6] Output: true Explanation: The array can be partitioned into the subarrays [4,4] and [4,5,6]. This partition is valid, so we return true.
Example 2:
Input: nums = [1,1,1,2] Output: false Explanation: There is no valid partition for this array.
Constraints:
2 <= nums.length <= 105
1 <= nums[i] <= 106
public bool ValidPartition(int[] nums) { bool[] dp = new bool[nums.Length]; dp[0] = false; for (int i = 0; i < nums.Length; i++) { dp[i] = false; //First case: if (i - 1 >= 0 && nums[i - 1] == nums[i]) { if (i - 2 >= 0) dp[i] = dp[i - 2]; else dp[i] = true; } //Second case: if (!dp[i] && i - 2 >= 0 && nums[i - 2] == nums[i - 1] && i - 1 >= 0 && nums[i - 1] == nums[i]) { if (i - 3 >= 0) dp[i] = dp[i - 3]; else dp[i] = true; } //Third case: if (!dp[i] && i - 2 >= 0 && nums[i - 2] == nums[i - 1] - 1 && i - 1 >= 0 && nums[i - 1] == nums[i] - 1) { if (i - 3 >= 0) dp[i] = dp[i - 3]; else dp[i] = true; } } return dp[dp.Length - 1]; }
Comments
Post a Comment