Four HashTables
Using four HashTables to solve this problem, two for rows, two for columns. Two passes in the matrix, for a time complexity of O(n*m). Code is down below, cheers, ACC.
2482. Difference Between Ones and Zeros in Row and Column
Medium
You are given a 0-indexed m x n
binary matrix grid
.
A 0-indexed m x n
difference matrix diff
is created with the following procedure:
- Let the number of ones in the
ith
row beonesRowi
. - Let the number of ones in the
jth
column beonesColj
. - Let the number of zeros in the
ith
row bezerosRowi
. - Let the number of zeros in the
jth
column bezerosColj
. diff[i][j] = onesRowi + onesColj - zerosRowi - zerosColj
Return the difference matrix diff
.
Example 1:
Input: grid = [[0,1,1],[1,0,1],[0,0,1]] Output: [[0,0,4],[0,0,4],[-2,-2,2]] Explanation: - diff[0][0] =onesRow0 + onesCol0 - zerosRow0 - zerosCol0
= 2 + 1 - 1 - 2 = 0 - diff[0][1] =onesRow0 + onesCol1 - zerosRow0 - zerosCol1
= 2 + 1 - 1 - 2 = 0 - diff[0][2] =onesRow0 + onesCol2 - zerosRow0 - zerosCol2
= 2 + 3 - 1 - 0 = 4 - diff[1][0] =onesRow1 + onesCol0 - zerosRow1 - zerosCol0
= 2 + 1 - 1 - 2 = 0 - diff[1][1] =onesRow1 + onesCol1 - zerosRow1 - zerosCol1
= 2 + 1 - 1 - 2 = 0 - diff[1][2] =onesRow1 + onesCol2 - zerosRow1 - zerosCol2
= 2 + 3 - 1 - 0 = 4 - diff[2][0] =onesRow2 + onesCol0 - zerosRow2 - zerosCol0
= 1 + 1 - 2 - 2 = -2 - diff[2][1] =onesRow2 + onesCol1 - zerosRow2 - zerosCol1
= 1 + 1 - 2 - 2 = -2 - diff[2][2] =onesRow2 + onesCol2 - zerosRow2 - zerosCol2
= 1 + 3 - 2 - 0 = 2
Example 2:
Input: grid = [[1,1,1],[1,1,1]] Output: [[5,5,5],[5,5,5]] Explanation: - diff[0][0] = onesRow0 + onesCol0 - zerosRow0 - zerosCol0 = 3 + 2 - 0 - 0 = 5 - diff[0][1] = onesRow0 + onesCol1 - zerosRow0 - zerosCol1 = 3 + 2 - 0 - 0 = 5 - diff[0][2] = onesRow0 + onesCol2 - zerosRow0 - zerosCol2 = 3 + 2 - 0 - 0 = 5 - diff[1][0] = onesRow1 + onesCol0 - zerosRow1 - zerosCol0 = 3 + 2 - 0 - 0 = 5 - diff[1][1] = onesRow1 + onesCol1 - zerosRow1 - zerosCol1 = 3 + 2 - 0 - 0 = 5 - diff[1][2] = onesRow1 + onesCol2 - zerosRow1 - zerosCol2 = 3 + 2 - 0 - 0 = 5
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 105
1 <= m * n <= 105
grid[i][j]
is either0
or1
.
public int[][] OnesMinusZeros(int[][] grid) { Hashtable rowOnes = new Hashtable(); Hashtable rowZeroes = new Hashtable(); Hashtable colOnes = new Hashtable(); Hashtable colZeroes = new Hashtable(); for (int r = 0; r < grid.Length; r++) { for (int c = 0; c < grid[r].Length; c++) { if (grid[r][c] == 1) { if (!rowOnes.ContainsKey(r)) rowOnes.Add(r, 0); rowOnes[r] = (int)rowOnes[r] + 1; if (!colOnes.ContainsKey(c)) colOnes.Add(c, 0); colOnes[c] = (int)colOnes[c] + 1; } else { if (!rowZeroes.ContainsKey(r)) rowZeroes.Add(r, 0); rowZeroes[r] = (int)rowZeroes[r] + 1; if (!colZeroes.ContainsKey(c)) colZeroes.Add(c, 0); colZeroes[c] = (int)colZeroes[c] + 1; } } } for (int r = 0; r < grid.Length; r++) { for (int c = 0; c < grid[r].Length; c++) { grid[r][c] = (rowOnes.ContainsKey(r) ? (int)rowOnes[r] : 0) + (colOnes.ContainsKey(c) ? (int)colOnes[c] : 0) - (rowZeroes.ContainsKey(r) ? (int)rowZeroes[r] : 0) - (colZeroes.ContainsKey(c) ? (int)colZeroes[c] : 0); } } return grid; }
Comments
Post a Comment