Grid and Hashes - Part 2

Another problem involving grid and hash tables. Relatively simple, just keeping track of the numbers already used, and the mapping letter --> number. Complexity-wise, O(|board| * |pattern|) or in other words, 50^4, or ~6M, which is very tractable. Code is down below, cheers, ACC.

Match Alphanumerical Pattern in Matrix I - LeetCode

You are given a 2D integer matrix board and a 2D character matrix pattern. Where 0 <= board[r][c] <= 9 and each element of pattern is either a digit or a lowercase English letter.

Your task is to find a 

 of board that matches pattern.

An integer matrix part matches pattern if we can replace cells containing letters in pattern with some digits (each distinct letter with a unique digit) in such a way that the resulting matrix becomes identical to the integer matrix part. In other words,

  • The matrices have identical dimensions.
  • If pattern[r][c] is a digit, then part[r][c] must be the same digit.
  • If pattern[r][c] is a letter x:
    • For every pattern[i][j] == xpart[i][j] must be the same as part[r][c].
    • For every pattern[i][j] != xpart[i][j] must be different than part[r][c].

Return an array of length 2 containing the row number and column number of the upper-left corner of a submatrix of board which matches pattern. If there is more than one such submatrix, return the coordinates of the submatrix with the lowest row index, and in case there is still a tie, return the coordinates of the submatrix with the lowest column index. If there are no suitable answers, return [-1, -1].

 

Example 1:

122
223
233
ab
bb

Input: board = [[1,2,2],[2,2,3],[2,3,3]], pattern = ["ab","bb"]

Output: [0,0]

Explanation: If we consider this mapping: "a" -> 1 and "b" -> 2; the submatrix with the upper-left corner (0,0) is a match as outlined in the matrix above.

Note that the submatrix with the upper-left corner (1,1) is also a match but since it comes after the other one, we return [0,0].

Example 2:

112
334
666
ab
66

Input: board = [[1,1,2],[3,3,4],[6,6,6]], pattern = ["ab","66"]

Output: [1,1]

Explanation: If we consider this mapping: "a" -> 3 and "b" -> 4; the submatrix with the upper-left corner (1,1) is a match as outlined in the matrix above.

Note that since the corresponding values of "a" and "b" must differ, the submatrix with the upper-left corner (1,0) is not a match. Hence, we return [1,1].

Example 3:

12
21
xx

Input: board = [[1,2],[2,1]], pattern = ["xx"]

Output: [-1,-1]

Explanation: Since the values of the matched submatrix must be the same, there is no match. Hence, we return [-1,-1].

 

Constraints:

  • 1 <= board.length <= 50
  • 1 <= board[i].length <= 50
  • 0 <= board[i][j] <= 9
  • 1 <= pattern.length <= 50
  • 1 <= pattern[i].length <= 50
  • pattern[i][j] is either a digit represented as a string or a lowercase English letter.

public int[] FindPattern(int[][] board, string[] pattern)
{
    int rowRetVal = -1;
    int colRetVal = -1;

    for (int r = 0; r < board.Length; r++)
    {
        for (int c = 0; c < board[r].Length; c++)
        {
            if (FindPattern(board, pattern, r, c))
            {
                if (rowRetVal == -1 ||
                    r < rowRetVal ||
                    (r == rowRetVal && c < colRetVal))
                {
                    rowRetVal = r;
                    colRetVal = c;
                }
            }
        }
    }

    return new int[] { rowRetVal, colRetVal };
}

private bool FindPattern(int[][] board, string[] pattern, int row, int col)
{
    Hashtable letterToNumber = new Hashtable();
    Hashtable numberUsed = new Hashtable();

    for (int r = 0; r < pattern.Length; r++)
    {
        if (row + r >= board.Length) return false;
        for (int c = 0; c < pattern[r].Length; c++)
        {
            if (col + c >= board[row + r].Length) return false;
            if (pattern[r][c] >= '0' && pattern[r][c] <= '9')
            {
                int n = (int)(pattern[r][c] - '0');
                if (board[row + r][col + c] != n) return false;
            }
            else
            {
                if (letterToNumber.ContainsKey(pattern[r][c]))
                {
                    int n = (int)letterToNumber[pattern[r][c]];
                    if (board[row + r][col + c] != n) return false;
                }
                else
                {
                    if (numberUsed.ContainsKey(board[row + r][col + c])) return false;
                    numberUsed.Add(board[row + r][col + c], true);
                    letterToNumber.Add(pattern[r][c], board[row + r][col + c]);
                }
            }
        }
    }

    return true;
}

Comments

Popular posts from this blog

Advent of Code - Day 6, 2024: BFS and FSM

Golang vs. C#: performance characteristics (simple case study)

Advent of Code - Day 7, 2024: Backtracking and Eval