Grid - Breadth First Search (BFS)
Although this is a typical BFS problem, it does require close attention to details. Here it is: https://leetcode.com/problems/check-if-there-is-a-valid-path-in-a-grid/
The important aspect to address is to understand the connection between the cells. There is quite a few combinations, around 6 x 2 x 3 or 36 which need to be coded properly (each one) otherwise few cases will fail. Other than that, straightforward BFS. Cheers, ACC.
public class Solution
{
public bool HasValidPath(int[][] grid)
{
Hashtable visited = new Hashtable();
Queue<QueueItem> queue = new Queue<QueueItem>();
QueueItem qi = new QueueItem(0, 0);
queue.Enqueue(qi);
visited.Add(qi.key, true);
while (queue.Count > 0)
{
QueueItem current = queue.Dequeue();
if (current.row == grid.Length - 1 && current.col == grid[0].Length - 1) return true;
int[] rowDelta = { 1, -1, 0, 0 };
int[] colDelta = { 0, 0, 1, -1 };
for (int i = 0; i < rowDelta.Length; i++)
{
int nRow = current.row + rowDelta[i];
int nCol = current.col + colDelta[i];
switch (grid[current.row][current.col])
{
case 1:
if (nCol == current.col + 1 &&
nCol < grid[0].Length &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 5))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nCol == current.col - 1 &&
nCol >= 0 &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 4 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 2:
if (nRow == current.row + 1 &&
nRow < grid.Length &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 5 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row - 1 &&
nRow >= 0 &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 4))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 3:
if (nCol == current.col - 1 &&
nCol >= 0 &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 4 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row + 1 &&
nRow < grid.Length &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 5 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 4:
if (nCol == current.col + 1 &&
nCol < grid[0].Length &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 5))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row + 1 &&
nRow < grid.Length &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 5 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 5:
if (nCol == current.col - 1 &&
nCol >= 0 &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 4 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row - 1 &&
nRow >= 0 &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 4))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 6:
if (nCol == current.col + 1 &&
nCol < grid[0].Length &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 5))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row - 1 &&
nRow >= 0 &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 4))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
}
}
}
return false;
}
private void AddToQueue(Queue<QueueItem> queue,
int[][] grid,
int row,
int col,
Hashtable visited)
{
QueueItem nqi = new QueueItem(row, col);
if (row >= 0 &&
row < grid.Length &&
col >= 0 &&
col < grid[0].Length &&
!visited.ContainsKey(nqi.key))
{
queue.Enqueue(nqi);
visited.Add(nqi.key, true);
}
}
}
public class QueueItem
{
public int row = 0;
public int col = 0;
public int key = 0;
public QueueItem(int row, int col)
{
this.row = row;
this.col = col;
this.key = 400 * row + col;
}
}
1391. Check if There is a Valid Path in a Grid
Medium
Given a m x n
grid
. Each cell of the grid
represents a street. The street of grid[i][j]
can be:- 1 which means a street connecting the left cell and the right cell.
- 2 which means a street connecting the upper cell and the lower cell.
- 3 which means a street connecting the left cell and the lower cell.
- 4 which means a street connecting the right cell and the lower cell.
- 5 which means a street connecting the left cell and the upper cell.
- 6 which means a street connecting the right cell and the upper cell.
You will initially start at the street of the upper-left cell
(0,0)
. A valid path in the grid is a path which starts from the upper left cell (0,0)
and ends at the bottom-right cell (m - 1, n - 1)
. The path should only follow the streets.
Notice that you are not allowed to change any street.
Return true if there is a valid path in the grid or false otherwise.
Example 1:
Input: grid = [[2,4,3],[6,5,2]] Output: true Explanation: As shown you can start at cell (0, 0) and visit all the cells of the grid to reach (m - 1, n - 1).
Example 2:
Input: grid = [[1,2,1],[1,2,1]] Output: false Explanation: As shown you the street at cell (0, 0) is not connected with any street of any other cell and you will get stuck at cell (0, 0)
Example 3:
Input: grid = [[1,1,2]] Output: false Explanation: You will get stuck at cell (0, 1) and you cannot reach cell (0, 2).
Example 4:
Input: grid = [[1,1,1,1,1,1,3]] Output: true
Example 5:
Input: grid = [[2],[2],[2],[2],[2],[2],[6]] Output: true
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
1 <= grid[i][j] <= 6
The important aspect to address is to understand the connection between the cells. There is quite a few combinations, around 6 x 2 x 3 or 36 which need to be coded properly (each one) otherwise few cases will fail. Other than that, straightforward BFS. Cheers, ACC.
public class Solution
{
public bool HasValidPath(int[][] grid)
{
Hashtable visited = new Hashtable();
Queue<QueueItem> queue = new Queue<QueueItem>();
QueueItem qi = new QueueItem(0, 0);
queue.Enqueue(qi);
visited.Add(qi.key, true);
while (queue.Count > 0)
{
QueueItem current = queue.Dequeue();
if (current.row == grid.Length - 1 && current.col == grid[0].Length - 1) return true;
int[] rowDelta = { 1, -1, 0, 0 };
int[] colDelta = { 0, 0, 1, -1 };
for (int i = 0; i < rowDelta.Length; i++)
{
int nRow = current.row + rowDelta[i];
int nCol = current.col + colDelta[i];
switch (grid[current.row][current.col])
{
case 1:
if (nCol == current.col + 1 &&
nCol < grid[0].Length &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 5))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nCol == current.col - 1 &&
nCol >= 0 &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 4 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 2:
if (nRow == current.row + 1 &&
nRow < grid.Length &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 5 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row - 1 &&
nRow >= 0 &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 4))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 3:
if (nCol == current.col - 1 &&
nCol >= 0 &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 4 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row + 1 &&
nRow < grid.Length &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 5 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 4:
if (nCol == current.col + 1 &&
nCol < grid[0].Length &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 5))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row + 1 &&
nRow < grid.Length &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 5 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 5:
if (nCol == current.col - 1 &&
nCol >= 0 &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 4 || grid[nRow][nCol] == 6))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row - 1 &&
nRow >= 0 &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 4))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
case 6:
if (nCol == current.col + 1 &&
nCol < grid[0].Length &&
(grid[nRow][nCol] == 1 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 5))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
if (nRow == current.row - 1 &&
nRow >= 0 &&
(grid[nRow][nCol] == 2 || grid[nRow][nCol] == 3 || grid[nRow][nCol] == 4))
{
AddToQueue(queue, grid, nRow, nCol, visited);
}
break;
}
}
}
return false;
}
private void AddToQueue(Queue<QueueItem> queue,
int[][] grid,
int row,
int col,
Hashtable visited)
{
QueueItem nqi = new QueueItem(row, col);
if (row >= 0 &&
row < grid.Length &&
col >= 0 &&
col < grid[0].Length &&
!visited.ContainsKey(nqi.key))
{
queue.Enqueue(nqi);
visited.Add(nqi.key, true);
}
}
}
public class QueueItem
{
public int row = 0;
public int col = 0;
public int key = 0;
public QueueItem(int row, int col)
{
this.row = row;
this.col = col;
this.key = 400 * row + col;
}
}
Comments
Post a Comment